On the Diophantine Equation (p + 4n)^ x + p^y = z^2

نویسندگان

چکیده

In this paper, we study the Diophantine equation $(p+4n)^x+p^y=z^2,$ where $n$ is a non-negative integer and $p, p+4n$ are prime numbers such that $p\equiv 7\pmod{12}$. We show solutions of $(x, y, z)\in \{(0, 1, \sqrt {p+1})\} \cup \{ (1, 0, 2\sqrt{n+\frac{p+1}{4}})\}$, $\sqrt {p+1}$ $\sqrt{n+\frac{p+1}{4}}$ integers.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Diophantine Equation 8x + py = z2

Let p be a fixed odd prime. Using certain results of exponential Diophantine equations, we prove that (i) if p ≡ ± 3(mod  8), then the equation 8 (x) + p (y) = z (2) has no positive integer solutions (x, y, z); (ii) if p ≡ 7(mod  8), then the equation has only the solutions (p, x, y, z) = (2 (q) - 1, (1/3)(q + 2), 2, 2 (q) + 1), where q is an odd prime with q ≡ 1(mod  3); (iii) if p ≡ 1(mod  8)...

متن کامل

ON THE DIOPHANTINE EQUATION x 4 − q 4 = py 5

In this paper we study the Diophantine equation x4− q4 = py5, with the following conditions: p and q are different prime natural numbers, y is not divisible with p, p ≡ 3 (mod20), q ≡ 4 (mod5), p is a generator of the group (

متن کامل

ON THE DIOPHANTINE EQUATION x 4 − q 4 = py 3

In this paper we study the Diophantine equation x4−q4 = py, with the following conditions: p and q are prime distincts natural numbers, x is not divisible with p, p ≡ 11 (mod12), q ≡ 1 (mod3), p is a generator of the group ( Zq , · ) , 2 is a cubic residue mod q.

متن کامل

ABOUT THE DIOPHANTINE EQUATION x 4 − q 4 = py r

In this paper, we prove a theorem about the integer solutions to the Diophantine equation x − q = py, extending previous work of K.Győry, and F.Luca and A.Togbe, and of the author. MSC (2000): 11D41

متن کامل

ON THE DIOPHANTINE EQUATION x p − x = y q −

We consider the diophantine equation (∗) x − x = y − y in integers (x, p, y, q). We prove that for given p and q with 2 ≤ p < q (∗) has only finitely many solutions. Assuming the abcconjecture we can prove that p and q are bounded. In the special case p = 2 and y a prime power we are able to solve (∗) completely.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Pure and Applied Mathematics

سال: 2022

ISSN: ['1307-5543']

DOI: https://doi.org/10.29020/nybg.ejpam.v15i4.4508